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Abstract. We report in this paper results of experimental and theoretical studies of transitions
between different integer quantum Hall phases in two-dimensional electron systems, as well as the
transition to the insulating phase at high magnetic fields. We focus mainly on the resistivity at the
transitions. We first present results of a numerical calculation for a non-interacting electron model,
which shows that the Thouless conductance is universal at integer quantum Hall transitions, just
like the conductivity tensor. We then present experimental results for the measured longitudinal
resistivity at the quantum Hall–insulator transition, which are found to be clustered around the
universal value suggested theoretically for the non-interacting model, within a range of 15%.
Finally, we investigate departure from universality due to finite temperature and finite system size
near the transition point.

1. Introduction

Continuous (or second-order) quantum phase transitions in many-electron systems are of
general interest to condensed matter physicists [1]. Recently a class of such quantum phase
transitions, namely the transitions between different quantum Hall plateaus, and the transition
between a quantum Hall phase and an insulating phase at high magnetic field (B), have been
under extensive experimental [2–15] and theoretical [16–40] study. These transitions are
realized in a variety of two-dimensional electron systems (2DES) formed at the interface
between two semiconductors, or in semiconductor quantum well structures.

In the renormalization group (RG) language, continuous phase transitions are controlled
by RG fixed points, and many properties of the transition depend only on which fixed point
the transition is controlled by, or which universality class it belongs to, and are independent
of microscopic details of the system. The best known examples of such universal properties
are of course the critical exponents. In principle, other quantities that are dimensionless can
also be universal at the critical point. Of particular interest in the study of quantum Hall
transitions is the conductivity tensor at the critical point, which in two dimensions (2D) can
be expressed as dimensionless numbers times the fundamental unit of conductance, e2/h.
It has been suggested that these numbers should be universal, both at superfluid–insulator
transitions [41], and quantum Hall transitions [19]. In the latter case, which is the focus of
the present paper, this suggestion has received some support from both experimental [9, 11]
studies at the quantum Hall–insulator transition at high magnetic field, and numerical work in
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the lowest Landau level [20] as well as the network model [28, 29]. However, experimentally
it was found [11] that there exists some scatter in the data around the predicted universal value.
Also experimentally there is evidence [42] that critical scaling may not hold if all data in a
broad temperature range are used. The issue is therefore not yet settled.

In this paper, we further address the issue of universality of the conductance tensor at the
quantum Hall transitions, which was considered in previous work by our group [11, 20]. We
present new results of a numerical study of the integer quantum Hall transitions for a non-
interacting electron model on a lattice. Our results show that another dimensionless quantity,
the Thouless conductance, a quantity that is closely related to the longitudinal conductance
of the system, is universal at integer quantum Hall transitions. We then present results of
further experimental studies of the resistivity tensor at the integer quantum Hall transitions.
In agreement with previous experimental work, we find, at the transition between the ν = 1
quantum Hall state and the insulator at high magnetic field, that the longitudinal resistivity,
ρxxc, is indeed clustered around the theoretically suggested universal value, h/e2, but the data
show a scatter of order 15%. Possible sources of this scattering will be discussed. No such
scattering is found in the critical Hall resistivity, ρxyc.

The above results pertain to the infinite system in the limit of T = 0. We then consider
the effect of non-zero temperature (for the experimental data) and the effect of finite size
(numerical calculation). We present data on the T -dependence of ρxx at the critical point, and
study how the asymptotic zero-temperature value is reached. In a non-interacting system, the
effect of a finite T is to set a finite dephasing length, which effectively divides an otherwise
infinite system into incoherent finite pieces, and introduces finite-size effects to the critical
behaviour. We have therefore also studied the size dependence of the Thouless conductance
near the critical points, in our numerical calculations, in an effort to see the relation with
experimental observations of finite-temperature effects in the true interacting electron gas in
two dimensions.

The rest of the paper is organized as described below. In section 2 we present results of
our numerical study on a non-interacting electron model on a lattice, and demonstrate that at
the critical points, the properly defined Thouless conductance is a universal number that is
independent of the strength and type of random potential, amount of mixing between different
Landau levels (subbands), whether there is particle–hole symmetry, etc. We also study the
system size dependence of the Thouless conductance at the critical points, and demonstrate that
the universal asymptotic value is reached at surprisingly small system sizes in the lowest Landau
subband. In section 3 we present our experimental results on studies of the resistivity tensor,
both at the high-field QH–insulator and QH–QH critical points. We study both the asymptotic
low-temperature behaviour, and how the asymptotic values are approached, by studying the
temperature dependence at higher temperature. In section 4 we discuss the relation between
our experimental and numerical results, as well as their connection to other theoretical and
experimental work.

2. Numerical study of Thouless conductance

In this section we present results of numerical studies of the Thouless conductance at the critical
point, using a non-interacting electron model on a square lattice, described by the following
Hamiltonian:

H =
∑
m,n

{−(c†
m+1,ncm,n + c†

m,n+1ei 2παmcm,n + H.c.) + εm,nc
†
m,ncm,n} (1)

where the integersm and n are the x- and y-coordinates of the lattice site in terms of the lattice
constant, cm,n is the fermion operator on that site, H.c. stands for Hermitian conjugate, α is the
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amount of magnetic flux per plaquette in units of the flux quantum hc/e, and ε is the random
on-site potential. We will present data mostly for an uncorrelated random potential (i.e., no
correlation between εs on different lattice sites), with ε ranging uniformly from −W toW . A
random potential with some short-range correlation will also be studied. The Landau gauge
A = (0, Bx, 0) is used in equation (1). In this work we study finite-size systems of square
geometry, with linear size L, for L ranging from 18 to 50. We impose a periodic boundary
condition (PB) along the x̂-direction: �(k + Lx̂) = �(k) and a periodic or antiperiodic
boundary condition (APB) along the ŷ-direction: �(k + Lŷ) = ±�(k). We diagonalize
the Hamiltonian (1) numerically to obtain the single-electron spectrum for both the periodic
boundary condition (Enp) and the antiperiodic boundary condition (Enap) along the ŷ-direction,
while keeping the boundary condition along x̂ periodic. Here n is the index for a specific
eigenstate.

The Thouless conductance [43] at Fermi energy E is defined as

gT (E) = 〈δE〉
�E

(2)

where �E = 1/[L2D(E)] is the average level spacing at E, determined by the disorder-
averaged density of states (DOS) per siteD(E), and 〈δE〉 is the average of the absolute values
of the difference between Enp and Enap, also at energy E†.

In figure 1 we show the Thouless conductance (gT ) for systems with α = 1/3, W = 2.5
(uncorrelated potential), andL ranging from 18 to 48. We find, except for four special energies,
that gT decreases as L increases; while for E = ±E1

c ≈ ±2.0 and E = ±E2
c ≈ ±1.1, gT

† There are different ways to define the Thouless conductance. For example, reference [25] uses the geometric mean
instead of the ordinary average of the energy difference to determine 〈δE〉. What we mean by the universality of
Thouless conductance is that for a fixed definition, like the one used in this paper, the Thouless conductance at the
critical point is independent of the details of the model.

−4.0 −2.0 0.0 2.0 4.0
E

0.00

0.10

0.20

gT

L=18
L=30
L=48

Figure 1. Thouless conductance gT as a function of energy for α = 1/3, W = 2.5, at different
system sizes.
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peaks, and appears to be essentially independent of L†. The physics of such behaviour may
be understood in the following way [31–34,36]. In the absence of a random potential we have
three Landau subbands, and the Hall conductance (in units of e2/h) for each subband is 1 for the
two side bands and −2 for the central band. As the random potential is turned on, most states
get localized, but there will be one critical energy in each side band (±E1

c ) and two critical
energies (±E2

c ) in the central band, at which states are delocalized. The Hall conductance
carried by the extended states is 1 for ±E1

c , and −1 for ±E2
c . For energies away from these

critical energies, states are localized; therefore gT decreases as system size L increases, and
goes to zero in the thermodynamic limit; at these critical energies, states are delocalized, and
gT approaches a finite number in the thermodynamic limit; for large enough system size L,
gT is essentially independent of L. It is clear from the plot that gT has essentially reached
its asymptotic value for L � 18; the size dependence of gT at smaller sizes will be discussed
later. E1

c and E2
c move together as W increases, and at W = Wc ≈ 2.9 they merge together

and annihilate each other, and all states become localized [33].
In the following we will focus on the value of gT at the critical energies. In figure 2(a) we

show the size-independent peak value of gT at E = −E1
c , for different randomness strengths

W , and L = 30 (which we believe to be in the asymptotic regime already). The value of gT is
the same atE = E1

c , due to the particle–hole symmetry of the model. We findgT ≈ 0.21±0.02,
independent of the value of W . In figure 2(b) we present the peak value of gT in the lowest
Landau subband for α = 1/5 and α = 1/7, at different W s, and system sizes L = 25 and
L = 21 respectively. We have checked that for these sizes the peak value of gT of the lowest
Landau subband is already at its asymptotic value. Again we get the same value, within error
bars, even though we have different field strengths and different numbers of Landau subbands.

So far we have only studied uncorrelated random potentials on the lattice, which maps onto
a Gaussian white-noise potential in the continuum limit. In the following we study random
potentials with short-range correlations. We use the following way to generate short-range
correlation: we generate an uncorrelated random number wi , uniformly distributed from −W
to W , for each lattice site i. Instead of using wi as the random on-site potential εi as before,
we take

εi = wi + a
∑
δ

wi+δ (3)

where the summation is over the four neighbouring sites of i. This way, the potential of one
site is correlated with its nearest and next-nearest neighbours, and the amount of correlation
is determined by a. In figure 3 we show the size-independent peak value of gT (again based
on data with L = 30) at E1

c , for α = 1/3, W = 1.5, at different as. We find that within error
bars it is independent of a, and takes the same value as the uncorrelated potential (a = 0).

Our data clearly indicate thatgT ≈ 0.21±0.02 is a universal number at the critical energy of
the lowest Landau subband of the square lattice, independent of the strength of the randomness
and magnetic field, as well as the type of random potential (correlated or uncorrelated). Within
error bars, the same universal number is also found in the lowest Landau level of the continuum
system in reference [37], as well as by others [38], where the same definition of the Thouless
conductance was used. We point out however that in our calculation, no projection to individual
subbands is made, and mixing between different Landau subbands (or levels) (which is often
important in real systems) is taken into account. We thus conclude that just like the conductivity
tensor, the Thouless conductance is a universal number at integer quantum Hall transition in
non-interacting electron models (either on a lattice or in the continuum).

† The independence of gT of L is quite clear for E = ±E1
c , while at ±E2

c there appears to be some very weak
L-dependence. On the basis of previous studies (see below), we know that there should be two critical energies at
±E2

c . The weak size dependence of gT on L will be discussed later.
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Figure 2. The peak value of the Thouless conductance gT in the lowest Landau subband, for
different magnetic field (α) and randomness (W ) strengths, with an uncorrelated random potential.

In principle, the truly universal value of gT at the critical energies is reached in the
thermodynamic limit L → ∞ only; there is always finite-size correction of gT at finite L, and
the correction should decrease as L increases. As discussed in section 1, in a non-interacting
system a finite system size is equivalent to finite temperature in an infinite system. Since
real experiments are always done at finite temperatures, such finite-size effects are observable.
Motivated by this we have also studied the size dependence of gT at the critical energies. In
figure 4 we plot the dependence of gT at E = −E1

c for α = 1/3 and W = 2.5. We find,
quite remarkably, that for L as small as 9, gT has essentially saturated at the asymptotic value,
indicating that the finite-size corrections of gT disappear extremely fast as L increases. The
deviation of gT at L = 6 from the universal value is clearly due to finite-size corrections;
associated with that, we have also found strong dependence of the peak value of gT at L = 6
on the randomness strength W , as shown in figure 5. We find the bigger W is, the closer to
the universal value gT becomes. This is reasonable because the stronger randomness is more
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ω=1.5,  α=1/3

Figure 3. The peak value of the Thouless conductance gT in the lowest Landau subband for a
short-range correlated potential. a is the strength of the short-range correlation.
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L

0.16

0.18

0.20
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0.24

0.26

0.28

gT

Figure 4. TheL-dependence of gT at the critical energy of the lowest Landau subband for α = 1/3.

effective in localizing states away from critical energies, and therefore suppresses finite-size
effects. No such dependence on W , however, is found for larger L where gT has saturated at
the universal value.

In the RG language, the finite-size correction to universal properties at the critical point is
due to the existence of irrelevant operators, whose strength scales to zero in the thermodynamic
limit under the RG at the critical point, while they remain finite in finite-size systems. It has
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Figure 5. The peak value of gT (at E = −E1
c ) in the lowest Landau subband for α = 1/3 and

L = 6 versus randomness strength W .

been known [44] for some time now, on the basis of numerical studies, that the length scale
required for such irrelevant operators to scale away is quite small in the lowest Landau level,
while in higher Landau levels it becomes very large. The origin of this difference is not yet fully
understood. Our result in the lowest Landau subband is clearly consistent with this finding.
Also consistent with this, we do see some weak size dependence of the peak value of gT in
higher subbands (see figure 1), suggesting the existence of finite-size correction in the size
range of our numerical study. We have also found strong dependence of the peak value of gT
in higher subbands onW for a given size as shown in figure 6. The dependence is very similar
to that of the peak value of gT in the lowest subband with L = 6, where we know that finite-
size corrections are present. Based on these we conclude that finite-size corrections are quite
important in higher Landau subbands within the size range of the present study, and conjecture
that in the thermodynamic limit, the peak value of gT may saturate at the same universal value
as in the lowest subband, provided that the critical energy carries Hall conductance ±1. We
will discuss the possible experimental consequences of these finite-size effects in section 4.

3. Experiments

In this section we describe our experimental results. While our main finding has already been
published before [11], we present here a more detailed account of our study of the QH-to-
insulator phase transition at low T . Since the main motivation of our work was to test the
theoretically predicted universal features, we have set out to study a broad range of samples
that represents much of the available variety of 2DES samples at the time of carrying out this
work. In figure 7 we illustrate this large diversity of samples studied by plotting the mobility
(µ) versus density (n) for some of our samples. The range of the axes in this figure is chosen
to represent virtually the entire range of 2DES that is reported in the literature (µ = 103–
107 cm2 V−1 s−1 and n = 109–1012 cm−2). As can be seen, our samples cover a significant
area in this log–log graph. To increase the generality of our results we obtained our samples
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1.5 2.0 2.5 3.0
W

0.20

0.25

0.30

gT

Figure 6. The peak value of gT (at E = −E2
c ) in the central Landau subband for α = 1/3 and

L = 30 versus randomness strength W (E2
c depends on W ).

104

105
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107

µ 
(c

m
2 /V
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c)

1010 1011 1012

n (cm-2 )

holes

InGaAs/InP

Max B

IQHE

AlGaAs QW

FQHE

1/5

 Ge/SiGe QW

Figure 7. Mobility versus density for some of the samples in this study. The vertical dashed line
indicated by Max B represents the maximum density for which the QH–insulator transition can
be observed in our 15.5 T magnet. The horizontal dashed line approximately separates samples
that do not exhibit the fractional QH phases from those that do. p-type samples are circled, and
the samples labelled 1/5 exhibit the re-entrant insulating transition which we do not discuss in this
paper.

from six different sources including three molecular beam epitaxy (MBE), one liquid-phase
epitaxy (LPE) and two metallo-organic chemical vapour deposition (MO-CVD) machines. To
ensure that geometrical factors, which are known to introduce modifications to transport in
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the QH regime, do not come into play in our study, we did not maintain a uniform sample
geometry. Rather, our samples were cut in many different shapes: some were wet etched into
a Hall-bar shape of various dimensions, and others were cleaved into a square or rectangular
shape with contacts diffused along the edges. The smallest contact-to-contact dimension was
100 µm while the largest was 1 mm. We also did not adhere to a specific structure design
of the wafers, with diverse 2DESs embedded in GaAs/AlGaAs heterostructures and quantum
wells (QWs), InGaAs/InAlAs QWs, InGaAs/InP heterostructures, AlAs/GaAs QWs, Ge/SiGe
QWs, and Si MOSFETs. The total number of samples studied at low temperatures exceeds
150. Measurements performed included both the diagonal (ρxx) and off-diagonal, or Hall (ρxy)
components of the resistivity tensor.

Quite generally, the QH series terminates, at high B, with a transition to an insulating
phase. A typical transition is shown in figure 8, where we plotB-traces of ρxx , taken at several
T s. The samples exhibit metallic behaviour at low B followed by a set of integer QH states
manifested by the vanishing of ρxx . As B is further increased beyond ν = 1, ρxx increases for
all temperatures. If we examine, however, the T -dependence of ρxx focusing on the high-B
region (figure 9), we observe a stark change in its character: in the QH region, ρxx decreases
as T is reduced towards absolute zero, while at higher B the opposite occurs, namely ρxx
increases as T → 0. It is therefore reasonable to use the temperature coefficient of resistivity
(TCR) to delineate two different transport regimes: the QH state (TCR < 0) and the insulator
(TCR > 0). We adopt this empirical ‘definition’ of the phases for the rest of the experimental
section.

100

80

60

40

20

0

ρ xx
 (

kΩ
/❑

)

1614121086420

B (T)

x8

 T=25-323 mK 
mm051c

ν=1ν=2ν=4

Figure 8. B-traces of ρxx at T = 25, 42, 62, 84, 106, 125, 145, 194, 238, 284, 323 mK, for a
GaAs/AlGaAs sample mm051c. The mobility of this sample is 12 000 cm2 V−1 s−1.

Examining figure 9 further reveals another transport feature which is typical of the QH-
to-insulator transition. It is possible, at low T , to identify a clear and well-defined B-value for
which the TCR vanishes, within experimental error. The existence of this criticalB-value (Bc)
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Figure 9. As figure 8, but for a narrow B-range focusing on the transition. We have also included
a ρxy -trace (dashed curve).

allows us to unambiguously determine (subject to the definition of the previous paragraph) the
boundary between the QH state and the insulator. A complete phase diagram can be obtained
by following the position of this ‘crossing’ point as other relevant parameters, such as disorder
or n, are changed, as was done extensively by Wong et al [9], Song et al [45] and others.

In a recent paper, Shahar et al [11] reported on a study of the ρxx-value at Bc (ρxxc) for a
large collection of samples. They noticed that, in accordance with theoretical expectations [20],
ρxxc seems to be close to the quantum unit of resistance, h/e2, independent of sample
parameters. Further, they showed that this apparent universality holds also for transitions from
the 1/3 fractional QH state to the insulator, again in agreement with theoretical predictions [19].

In the remainder of this section we expand on these previous findings by concentrating on
the transport properties at the critical point. We will provide further evidence for the notion of
universality near the QH-to-insulator transition, and remark on the QH–QH transitions. We
will also closely examine the transport at the critical point and show that, at higher temperatures,
systematic deviations of ρxx are clearly seen, although their trend and magnitude are sample
dependent. Finally, we will discuss the disorder-driven QH–insulator transition which is
realized experimentally by changingn by means of a metallic front-gate [4]. We will emphasize
the similarities between the disorder-driven and magnetic-field-driven transitions.

We would like to precede the discussion of our data with a note of caution. It would be
an unreasonable expectation to anticipate that all samples will behave uniformly in any subset
of their transport characteristics. It is well known, for instance, that samples exhibiting the
FQHE do not undergo a transition from the ν = 1 IQHE to an insulator (they will, ultimately,
undergo a transition to an insulator at higher B from a FQHE state). We therefore need to
define clearly which subset of our samples will be included in our test for universality at the
QH-to-insulator transitions. To clarify this need we plot, in figure 10, B-traces of ρxx taken
at several temperatures for a GaAs/AlGaAs sample grown on a (311)A substrate to produce
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Figure 10. B-traces of ρxx at T = 26, 46, 55, 99, and 177 mK for a p-type GaAs/AlGaAs
sample grown on a (311)A substrate. Note the apparent crossing point at 220 k%. µ =
220 000 cm2 V−1 s−1.

hole carriers. The ‘QH’ state marked on the figure as 1/3 is clearly abnormal with a very high
minimum resistivity at the lowest T . It is not surprising that the following ‘transition’ (common
crossing point of the different T -traces) to an insulator is at a very high value, ρxxc = 220
k%, which significantly deviates from universality. The above discussion leads to a natural,
albeit arbitrary, criterion for the ‘suitability’ of a given transition for a test of universality: for
a transition to be considered, we require that it exhibit a fully developed QH state followed
by a strong insulating behaviour. In both cases different tests can be considered to define
the ‘strength’ of the phase. We have chosen for the QH phase a resistivity that decreases
exponentially with decreasing T and, in addition, a value of ρxx at the QH minimum less than
h/100e2 at our lowest T , such that it is indistinguishable from zero when plotted on a scale
which includes the transition point. Similarly we define it as a fully developed insulator if
ρxx increases monotonically with B and reaches a value greater than 100h/e2 at our lowest T .
Arbitrary as they are, these simple criteria safely eliminate from consideration samples like
that of figure 10. Our results are not sensitive to small changes (factor of 2, for example) of
our threshold values.

In a previous letter [11] we reported the observation of a universal value ofρxxc. In figure 11
we plot ρxxc versus Bc for 20 of our samples. In fact, other abscissas could have equally been
used, such as µ or n, as ρxxc is rather independent of sample parameters and appears to be
scattered around h/e2 (solid line in figure 11). Two points should be emphasized. First, as we
noted before [11], the ρxxc-value does not significantly differ between samples that undergo the
transition from the ν = 1 integer QH state (empty symbols) and those for which the transition
takes place from the ν = 1/3 fractional QH state (solid symbols). This is in agreement with
the theoretical notion of super-universality [19]. We will not be discussing fractional QH
transitions in the remainder of this paper.

Second, the data points are scattered over a relatively wide range of ≈15% around h/e2.
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 ρxxc=25.3 (4)  kΩ 

Figure 11. ρxxc versus Bc for some of our samples. Empty (filled) symbols are for transitions
from the ν = 1 IQHE (ν = 1/3 FQHE) state. The error bars are typically smaller than the symbol
size, except for the samples where they are indicated, which had ill-defined geometries.

This scatter is evident not only for different samples but also for different cool-downs of the
same sample. Such variation would be expected in the mesoscopic regime, where sample
dimensions are smaller than length scales set by the non-zero temperatures; different cool-
downs would, in effect, be producing different samples. However, the cool-down dependence
of ρxxc is puzzling if we recall that the samples are all of rather large size. This point has been
emphasized in reference [11], and will be further discussed in section 4.

So far, we have reviewed our definition of the transition Bc and discussed the low-T value
of ρxxc. We now proceed to discuss the T -dependence of ρxxc at higher temperatures. In
figure 12 we plot ρxxc versus T for several samples. Depending on the sample and the T -
range, different forms of behaviour are observed. Common to all samples is a certain range at
the lowest T where ρxxc is T -independent, as expected at the critical point of the transition.
This value of ρxxc is the value plotted in figure 11. As T is increased, systematic deviations

40

35
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25

20

15

ρ xx
 (

kΩ
/❑

)

350300250200150100500

T (mK)

h/e2

MM051c

C60Ab

M124U2d

Figure 12. ρxxc at Bc , ρxx , versus T for three of our samples. The dashed arrow indicates
the theoretically predicted value for the transition, h/e2. Sample m124u2d is of higher mobility
(µ = 500 000 cm2 V−1 s−1) and it exhibits the fractional QH effect. The data depicted are from
the ν = 1/3–insulator transition.
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are observed for most samples. The T where these deviations appear is sample dependent, as
is the trend which they take. In figure 13 we plot ρxxc versus T on a log scale which shows
that for this particular sample, where we have a relatively wide range of data, a logarithmic
T -dependence of ρxxc is a reasonable description of the data. This dependence is similar to
that observed for 2D disordered metals at low T and B = 0. It is not clear whether the various
mechanisms that lead to the logarithmic T -dependence at B = 0 are applicable for the high-B
case. It is interesting to note that ρxyc has no noticeable T -dependence within this temperature
range, and deviation from the low-T asymptotic value of ρxyc only appears at much higher
temperatures [52].
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Figure 13. ρxxc versus T for sample C60Ab, with a log T scale. µ = 40000 cm2V−1s−1.

In the limit of strong disorder, the QH state ceases to exist and is replaced by an insulating
behaviour. It is a reasonable expectation that, if one could vary the effective disorder over
a wide enough range, a transition from a QH state to an insulator will be observed. This
expectation was verified in experiments [4–6]. In fact, the disorder-induced transition was
shown to be remarkably similar to the B-field-induced one as far as its critical properties are
concerned [9]. To vary the effective disorder the experimentalist usually employs a metallic
gate deposited near the 2D electrons. By biasing the gate with respect to the electron system
n can be varied continuously, resulting in an effective disorder change via the dependence
of the impurity potential strength on the screening effectiveness of the electrons which, in
turn, depends on n. In figure 14 we plot ρxxc versus T in the vicinity of a disorder-induced
ν = 1-to-insulator transition. The different sets of data correspond, in this figure, to different
gate-voltage bias and therefore to different disorder. The qualitative similarity to theB-induced
transition is clear. In addition we note that ρxxc for this transition is 24 k%, again close to
h/e2. The T -range of our study in this case is not sufficient for detecting the high-T deviations
of ρxxc.

Finally we remark on the behaviour at the critical point of QH–QH plateau-to-plateau
transitions. As we demonstrated in a recent paper [15], a direct and clear relation exists
between these transitions: it is possible to map the QH–QH transition to a QH-to-insulator
transition by considering the former as a QH–insulator transition occurring at the top LL in
the presence of an inert (full) bottom LL. In reference [15] we found that the transition point,
when properly identified, is at a value which is close (within 20%) to the theoretically predicted
value of 1

5 h/e
2 (see figure 15). Many other samples exhibit the QH–QH transition with ρxxc

much smaller than expected [13]. We are uncertain why the QH–insulator transition yields a
more consistent ρxxc than the QH–QH case; it may have to do with the fact that in the latter
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Figure 14. Disorder-induced QH–insulator transition. The densities are, from top to bottom, 0.7,
1.05, 1.3, 1.5, 1.7, 2.1, 2.9 × 1010 cm−2.

case one needs to subtract out contributions from occupied Landau levels to the conductivity
tensor, and then reverse the matrix to determine ρxxc.
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Figure 15. ρxx versus T near a QH–QH transition. For this transition the predicted critical ρxx is
1/5 h/e2.

4. Discussion and comparison of experimental and numerical results

In this paper we have examined the issue of universality of the conductance tensor at quantum
Hall transitions. The study is motivated on general grounds by the possibility of such
universality of dimensionless quantities at quantum critical points. This possibility is further
substantiated by our detailed study of a model of non-interacting electrons on a lattice, where
we find that the Thouless conductance at critical points characterizing integer quantum Hall
transitions is universal. This is in agreement with previous theoretical studies using different
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models and approaches. It has been known for a long time that the Thouless conductance is
closely related to the longitudinal conductivity of the system; they are believed to be of the same
order of magnitude, no matter whether the system is in the insulating phase, metallic phase,
or at the critical point, and are roughly proportional to each other. In the case of a metallic
state at zero magnetic field, a rigorous proportionality between the two can be established [53].
More recent numerical work [54] has found proportionality between the Thouless conductance
and Landauer–Büttiker conductance in Anderson models with long-stripe geometry, in both
metallic and localized regimes, again at zero magnetic field. People have not succeeded,
however, in establishing an exact relation between these two quantities in general. Thus while
our finding of the Thouless conductance is clearly consistent with and strongly suggestive of
a universal longitudinal conductivity of the system at the critical point, we cannot yet directly
relate its value gT ≈ 0.21 to the experimental conductivity σxxc (or ρxxc). We do hope,
however, that our finding here will motivate further theoretical work on the relation between
these two quantities, in the quantum Hall regime. Indeed, if both of them are universal at the
critical point, their ratio must also be universal at the critical point. Since numerically the
Thouless conductance is much easier to calculate than the longitudinal conductivity, such a
simple relation should be very useful in future research. It will also be very interesting to see
if the same ratio relates these two quantities away from the critical point.

We have then tested this hypothesis by comparing with results of detailed experimental
studies on the resistivity tensor at the points separating an integer quantum Hall phase and
the high-magnetic-field insulator, as well as points separating different integer quantum Hall
phases. We find that at the transition point between the ν = 1 quantum Hall state and the
high-magnetic-field insulating state, the longitudinal resistivity is clustered near h/e2, the
theoretically anticipated universal value [19]. This is in agreement with previous experimental
studies, as well as general theoretical expectations. However, experimentally, we find a sizable
scatter in the data for the longitudinal resistivity at the transition, about 15%. As pointed out
earlier, this cannot be attributed to mesoscopic fluctuations, as all our samples are of fairly
large size. Further, in the mesoscopic regime the resistivities are very sensitive to changes ofB
and other experimental knobs like gate voltage; such behaviour is not seen in our experiments.
No such large scatter is seen in our numerical calculations, after sample-averaging is done.
There are at least two important differences between our experimental and theoretical studies.
First, electron–electron interactions are not taken into account in the theoretical model, whereas
Coulomb interactions present in the experimental system are likely to be important to the critical
behaviour [25, 26, 56]. Secondly, the way that the conductivity is averaged in our numerical
work, albeit standard, may not necessarily be the most appropriate one for modelling the
experiments. In the numerical study, we average the Thouless conductance over samples with
the same size that are realizations of the random potential distribution under study. This would
be a good way to model the real system, if the electric field in the sample (which, presumably,
is broken into many incoherent pieces at finite T ) is uniform. However, since the current tends
to go through paths with minimum dissipation, it is likely that in real samples, the voltage
drop (or electric field) as well as the current distribution are highly non-uniform, especially
near the critical point. Possible effects of such non-uniform current and field distributions
should be taken into account in any theory that attempts to explain the scattering of the data, as
they are possibly related to the source of the scatter in the data. A model taking into account
macroscopic inhomogeneities suggests that this may indeed be a source of ‘non-universality’
of the measured conductance at quantum Hall transitions [55].

Finally, we have, probably for the first time in the literature, presented a detailed analysis
on how the T = 0 values of the resistivity tensor are approached in the asymptotic low-
temperature regime, and the deviations at higher temperatures. We find that the longitudinal
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resistivity ρxx at the critical point has some sizable, and apparently non-systematic, deviation
from the asymptotic low-temperature value as the temperature is increased to a (relatively)
high value; in the same temperature range, the Hall resistivity ρxy shows essentially no such
deviation [52]. However, in our studies of the Thouless conductance, which is believed to be
related to the diagonal conductance σxx , we saw very little change beyond a relatively small
size. To clarify this seeming contradiction, let us consider the relation between the resistivity
and conductivity tensors:

ρxx = σxx

σ 2
xx + σ 2

xy

(4)

ρxy = σxy

σ 2
xx + σ 2

xy

. (5)

If we imagine that at the critical point the values for a finite (but large) size L, σµν(L) and
ρµν(L), differ from their universal values by (small) amounts δσµν(L) and δρµν(L) resp-
ectively, then the above equations can be used to relate the deviations ρxx and ρxy from the
universal values to the deviations of σxx and σxy . Retaining only the lowest-order† terms, we
obtain

δρxx ≈ 1

σ 2
xx + σ 2

xy

[
δσxx

(
1 − 2σ 2
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σ 2
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xy

)
− δσxy
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]
(6)

δρxy ≈ 1

σ 2
xx + σ 2

xy

[
δσxy

(
1 − 2σ 2

xy

σ 2
xx + σ 2

xy

)
− δσxx

2σ 2
xx

σ 2
xx + σ 2

xy

]
. (7)

At the integer quantum Hall–insulator transition, since σxyc = σxxc = 0.5 e2/h, this gives

δρxx ≈ −δσxy(2h2/e4) (8)

δρxy ≈ −δσxx(2h2/e4) (9)

i.e., the deviation of longitudinal resistivity δρxx at finite T is proportional to the deviation of
Hall conductivity δσxy , while the absence of deviation in Hall resistivity implies the deviation
of longitudinal conductivity δσxx ≈ 0, consistent with our numerical study on Thouless
conductance! Furthermore, in a non-interacting electron model, δσxy at the critical point due
to finite-size effects can only come from particle–hole asymmetry in the corresponding Landau
level (band). In experimental systems, one expects, in general, asymmetry in the underlying
potential, as well as mixing of different Landau levels (bands), both of which give rise to
particle–hole asymmetry. Thus it is not unreasonable to expect finite-size corrections to σxyc
(and consequently ρxxc) to be discernible.

Much as this simple correlation is appealing, this is not the whole story. This is because
the calculated conductances as well as experimentally measured resistivities are ensemble-
averaged quantities, 〈· · ·〉, over the random variable for a fixed size L. In the former case,
the calculated quantity, gT (Ec), involves an ensemble-average 〈δE〉 over the change (due to
boundary conditions) in the eigenenergies at the Fermi level, which is believed to be related to
the ensemble averaged diagonal conductance 〈σxx〉 for the same size. In the case of experiment,
non-zero temperature T sets a finite length scale LT , and the sample may be thought of as
an ensemble of samples of length LT , and the measured longitudinal and Hall resistances
are complicated averages of the corresponding quantities on the length scale LT (which
may lead to the non-uniform current and electric field distribution discussed above). Even
for the case of a long sample with constant current, where one measures roughly 〈ρxx〉, no

† Since the observed deviation at finite T is typically of order one per cent of the asymptotic value, expansion to the
lowest order should be sufficient.
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equation analogous to equation (4) exists for the ensemble-averaged quantities; consequently
the deviations for finite size cannot be related simply as was done above without averaging.
Consequently, if the observed correlation exists between the finite-size corrections of 〈σxx〉
and 〈ρxy〉, it is for more complicated, and possibly much more interesting reasons. We also
note in passing that it has recently been suggested [56] that scaling at QH transitions involves
two dynamical exponents, of which one, related to the critical exponent η characterizing the
eigenfunction correlation at the critical point, determines the departure from universal values of
the conductance tensor, as a function of system size. We have mostly focused on a correlation
involving the relative magnitudes of the departures for the averaged conductance and measured
resistivity tensors; clearly, a more detailed investigation would be needed to address the critical
exponent associated with the functional form of these departures from universality. Thus, while
many features of the fascinating phase transitions in the quantum Hall regime, and their possible
connection to quantum critical phenomena, have been explored and understood, there remain
tantalizing and mysterious connections (as well as equally inexplicable disagreement) between
various results which we expect will continue to provide challenging and fruitful areas of future
research.
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